MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. 6060 Aluminum

N06110 nickel belongs to the nickel alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06110 nickel and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 53
9.0 to 16
Fatigue Strength, MPa 320
37 to 70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 530
86 to 130
Tensile Strength: Ultimate (UTS), MPa 730
140 to 220
Tensile Strength: Yield (Proof), MPa 330
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1490
660
Melting Onset (Solidus), °C 1440
610
Specific Heat Capacity, J/kg-K 440
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 11
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 320
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 260
37 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
14 to 23
Strength to Weight: Bending, points 21
22 to 30
Thermal Shock Resistance, points 20
6.3 to 9.9

Alloy Composition

Aluminum (Al), % 0 to 1.0
97.9 to 99.3
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0 to 0.050
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 0 to 1.0
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 1.0
0 to 0.1
Tungsten (W), % 1.0 to 4.0
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15