MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. EN 1.0453 Steel

N06110 nickel belongs to the nickel alloys classification, while EN 1.0453 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06110 nickel and the bottom bar is EN 1.0453 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 53
26
Fatigue Strength, MPa 320
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 84
73
Shear Strength, MPa 530
320
Tensile Strength: Ultimate (UTS), MPa 730
490
Tensile Strength: Yield (Proof), MPa 330
300

Thermal Properties

Latent Heat of Fusion, J/g 340
250
Maximum Temperature: Mechanical, °C 1020
400
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Expansion, µm/m-K 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 65
2.1
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 11
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
18
Thermal Shock Resistance, points 20
15

Alloy Composition

Aluminum (Al), % 0 to 1.0
0.020 to 0.060
Carbon (C), % 0 to 0.15
0 to 0.2
Chromium (Cr), % 28 to 33
0 to 0.3
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 0 to 1.0
96.9 to 99.38
Manganese (Mn), % 0 to 1.0
0.6 to 1.4
Molybdenum (Mo), % 9.0 to 12
0 to 0.080
Nickel (Ni), % 51 to 62
0 to 0.3
Niobium (Nb), % 0 to 1.0
0 to 0.010
Phosphorus (P), % 0 to 0.5
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0 to 1.0
0 to 0.040
Tungsten (W), % 1.0 to 4.0
0
Vanadium (V), % 0
0 to 0.020