MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. EN 1.4837 Stainless Steel

N06110 nickel belongs to the nickel alloys classification, while EN 1.4837 stainless steel belongs to the iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N06110 nickel and the bottom bar is EN 1.4837 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 53
6.8
Fatigue Strength, MPa 320
120
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 84
78
Tensile Strength: Ultimate (UTS), MPa 730
500
Tensile Strength: Yield (Proof), MPa 330
250

Thermal Properties

Latent Heat of Fusion, J/g 340
320
Maximum Temperature: Mechanical, °C 1020
1050
Melting Completion (Liquidus), °C 1490
1390
Melting Onset (Solidus), °C 1440
1350
Specific Heat Capacity, J/kg-K 440
490
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 65
20
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 11
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
29
Resilience: Unit (Modulus of Resilience), kJ/m3 260
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 21
18
Thermal Shock Resistance, points 20
11

Alloy Composition

Aluminum (Al), % 0 to 1.0
0
Carbon (C), % 0 to 0.15
0.3 to 0.5
Chromium (Cr), % 28 to 33
24 to 27
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 1.0
53.4 to 63.7
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 9.0 to 12
0 to 0.5
Nickel (Ni), % 51 to 62
11 to 14
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0 to 1.0
1.0 to 2.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 1.0 to 4.0
0