MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. EN AC-21200 Aluminum

N06110 nickel belongs to the nickel alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06110 nickel and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 53
3.9 to 6.2
Fatigue Strength, MPa 320
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 730
410 to 440
Tensile Strength: Yield (Proof), MPa 330
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 340
390
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1490
660
Melting Onset (Solidus), °C 1440
550
Specific Heat Capacity, J/kg-K 440
880
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 11
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 260
500 to 930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 23
38 to 40
Strength to Weight: Bending, points 21
41 to 43
Thermal Shock Resistance, points 20
18 to 19

Alloy Composition

Aluminum (Al), % 0 to 1.0
93.3 to 95.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
4.0 to 5.0
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0 to 0.050
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0 to 1.0
0 to 0.1
Tungsten (W), % 1.0 to 4.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1