MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. EN AC-41000 Aluminum

N06110 nickel belongs to the nickel alloys classification, while EN AC-41000 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06110 nickel and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 53
4.5
Fatigue Strength, MPa 320
58 to 71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 730
170 to 280
Tensile Strength: Yield (Proof), MPa 330
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 340
420
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1490
640
Melting Onset (Solidus), °C 1440
630
Specific Heat Capacity, J/kg-K 440
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 11
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 320
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 260
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
18 to 29
Strength to Weight: Bending, points 21
26 to 35
Thermal Shock Resistance, points 20
7.8 to 13

Alloy Composition

Aluminum (Al), % 0 to 1.0
95.2 to 97.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 1.0
0.3 to 0.5
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0 to 0.050
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
1.6 to 2.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 1.0
0.050 to 0.2
Tungsten (W), % 1.0 to 4.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15