MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. EN AC-44200 Aluminum

N06110 nickel belongs to the nickel alloys classification, while EN AC-44200 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06110 nickel and the bottom bar is EN AC-44200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 53
6.2
Fatigue Strength, MPa 320
63
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 730
180
Tensile Strength: Yield (Proof), MPa 330
86

Thermal Properties

Latent Heat of Fusion, J/g 340
570
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1490
590
Melting Onset (Solidus), °C 1440
580
Specific Heat Capacity, J/kg-K 440
910
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.6
2.5
Embodied Carbon, kg CO2/kg material 11
7.7
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 320
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 260
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 23
55
Strength to Weight: Axial, points 23
20
Strength to Weight: Bending, points 21
28
Thermal Shock Resistance, points 20
8.4

Alloy Composition

Aluminum (Al), % 0 to 1.0
85.2 to 89.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.55
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
10.5 to 13.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 1.0
0 to 0.15
Tungsten (W), % 1.0 to 4.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15