MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. Grade 18 Titanium

N06110 nickel belongs to the nickel alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06110 nickel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 53
11 to 17
Fatigue Strength, MPa 320
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 84
40
Shear Strength, MPa 530
420 to 590
Tensile Strength: Ultimate (UTS), MPa 730
690 to 980
Tensile Strength: Yield (Proof), MPa 330
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 340
410
Maximum Temperature: Mechanical, °C 1020
330
Melting Completion (Liquidus), °C 1490
1640
Melting Onset (Solidus), °C 1440
1590
Specific Heat Capacity, J/kg-K 440
550
Thermal Expansion, µm/m-K 12
9.9

Otherwise Unclassified Properties

Density, g/cm3 8.6
4.5
Embodied Carbon, kg CO2/kg material 11
41
Embodied Energy, MJ/kg 160
670
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 23
43 to 61
Strength to Weight: Bending, points 21
39 to 49
Thermal Shock Resistance, points 20
47 to 67

Alloy Composition

Aluminum (Al), % 0 to 1.0
2.5 to 3.5
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 1.0
92.5 to 95.5
Tungsten (W), % 1.0 to 4.0
0
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4