MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. Sintered 6061 Aluminum

N06110 nickel belongs to the nickel alloys classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06110 nickel and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 53
0.5 to 6.0
Fatigue Strength, MPa 320
32 to 62
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
25
Tensile Strength: Ultimate (UTS), MPa 730
83 to 210
Tensile Strength: Yield (Proof), MPa 330
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1490
640
Melting Onset (Solidus), °C 1440
610
Specific Heat Capacity, J/kg-K 440
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 11
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 260
28 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
8.6 to 21
Strength to Weight: Bending, points 21
16 to 29
Thermal Shock Resistance, points 20
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 0 to 1.0
96 to 99.4
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
0 to 0.5
Iron (Fe), % 0 to 1.0
0
Magnesium (Mg), % 0
0.4 to 1.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 1.0 to 4.0
0
Residuals, % 0
0 to 1.5