MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. C14300 Copper

N06110 nickel belongs to the nickel alloys classification, while C14300 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06110 nickel and the bottom bar is C14300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 53
2.0 to 42
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 84
43
Shear Strength, MPa 530
150 to 260
Tensile Strength: Ultimate (UTS), MPa 730
220 to 460
Tensile Strength: Yield (Proof), MPa 330
76 to 430

Thermal Properties

Latent Heat of Fusion, J/g 340
210
Maximum Temperature: Mechanical, °C 1020
220
Melting Completion (Liquidus), °C 1490
1080
Melting Onset (Solidus), °C 1440
1050
Specific Heat Capacity, J/kg-K 440
390
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 65
31
Density, g/cm3 8.6
9.0
Embodied Carbon, kg CO2/kg material 11
2.6
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
9.0 to 72
Resilience: Unit (Modulus of Resilience), kJ/m3 260
25 to 810
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
6.8 to 14
Strength to Weight: Bending, points 21
9.1 to 15
Thermal Shock Resistance, points 20
7.8 to 16

Alloy Composition

Aluminum (Al), % 0 to 1.0
0
Cadmium (Cd), % 0
0.050 to 0.15
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
99.9 to 99.95
Iron (Fe), % 0 to 1.0
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 1.0 to 4.0
0