MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. C19700 Copper

N06110 nickel belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N06110 nickel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 53
2.4 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 84
43
Shear Strength, MPa 530
240 to 300
Tensile Strength: Ultimate (UTS), MPa 730
400 to 530
Tensile Strength: Yield (Proof), MPa 330
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 340
210
Maximum Temperature: Mechanical, °C 1020
200
Melting Completion (Liquidus), °C 1490
1090
Melting Onset (Solidus), °C 1440
1040
Specific Heat Capacity, J/kg-K 440
390
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 65
30
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 11
2.6
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 260
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
12 to 16
Strength to Weight: Bending, points 21
14 to 16
Thermal Shock Resistance, points 20
14 to 19

Alloy Composition

Aluminum (Al), % 0 to 1.0
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.5
97.4 to 99.59
Iron (Fe), % 0 to 1.0
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0 to 0.050
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0.1 to 0.4
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 1.0 to 4.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2