MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. C35600 Brass

N06110 nickel belongs to the nickel alloys classification, while C35600 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is N06110 nickel and the bottom bar is C35600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 84
39
Tensile Strength: Ultimate (UTS), MPa 730
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 340
170
Maximum Temperature: Mechanical, °C 1020
120
Melting Completion (Liquidus), °C 1490
900
Melting Onset (Solidus), °C 1440
890
Specific Heat Capacity, J/kg-K 440
380
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 11
2.6
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 320
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
11 to 22
Strength to Weight: Bending, points 21
13 to 21
Thermal Shock Resistance, points 20
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 1.0
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
60 to 63
Iron (Fe), % 0 to 1.0
0 to 0.1
Lead (Pb), % 0
2.0 to 3.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 1.0 to 4.0
0
Zinc (Zn), % 0
33.4 to 38
Residuals, % 0
0 to 0.5