MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. C36200 Brass

N06110 nickel belongs to the nickel alloys classification, while C36200 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06110 nickel and the bottom bar is C36200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 53
20 to 53
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 84
39
Shear Strength, MPa 530
210 to 240
Tensile Strength: Ultimate (UTS), MPa 730
340 to 420
Tensile Strength: Yield (Proof), MPa 330
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 340
170
Maximum Temperature: Mechanical, °C 1020
120
Melting Completion (Liquidus), °C 1490
900
Melting Onset (Solidus), °C 1440
890
Specific Heat Capacity, J/kg-K 440
380
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 11
2.6
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
74 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 260
89 to 630
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
11 to 14
Strength to Weight: Bending, points 21
13 to 15
Thermal Shock Resistance, points 20
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 1.0
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
60 to 63
Iron (Fe), % 0 to 1.0
0 to 0.15
Lead (Pb), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 1.0 to 4.0
0
Zinc (Zn), % 0
32.4 to 36.5