MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. 5154 Aluminum

N06200 nickel belongs to the nickel alloys classification, while 5154 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 51
3.4 to 20
Fatigue Strength, MPa 290
100 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 560
140 to 210
Tensile Strength: Ultimate (UTS), MPa 780
240 to 360
Tensile Strength: Yield (Proof), MPa 320
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
590
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 9.1
130
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 240
64 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 25
25 to 37
Strength to Weight: Bending, points 22
32 to 42
Thermal Diffusivity, mm2/s 2.4
52
Thermal Shock Resistance, points 21
10 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.5
94.4 to 96.8
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0.15 to 0.35
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0 to 0.1
Iron (Fe), % 0 to 3.0
0 to 0.4
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 0.010
0 to 0.1
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15