MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. 6018 Aluminum

N06200 nickel belongs to the nickel alloys classification, while 6018 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 51
9.0 to 9.1
Fatigue Strength, MPa 290
85 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 560
170 to 180
Tensile Strength: Ultimate (UTS), MPa 780
290 to 300
Tensile Strength: Yield (Proof), MPa 320
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
570
Specific Heat Capacity, J/kg-K 430
890
Thermal Conductivity, W/m-K 9.1
170
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
44
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.7
2.9
Embodied Carbon, kg CO2/kg material 12
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 240
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
48
Strength to Weight: Axial, points 25
28 to 29
Strength to Weight: Bending, points 22
34 to 35
Thermal Diffusivity, mm2/s 2.4
65
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 0 to 0.5
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0 to 0.1
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0.15 to 0.4
Iron (Fe), % 0 to 3.0
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 0.010
0.3 to 0.8
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0.5 to 1.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15