MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. 6065 Aluminum

N06200 nickel belongs to the nickel alloys classification, while 6065 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 51
4.5 to 11
Fatigue Strength, MPa 290
96 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 560
190 to 230
Tensile Strength: Ultimate (UTS), MPa 780
310 to 400
Tensile Strength: Yield (Proof), MPa 320
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
590
Specific Heat Capacity, J/kg-K 430
890
Thermal Conductivity, W/m-K 9.1
170
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
43
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 65
11
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 12
8.4
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 240
540 to 1040
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 25
31 to 40
Strength to Weight: Bending, points 22
36 to 43
Thermal Diffusivity, mm2/s 2.4
67
Thermal Shock Resistance, points 21
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.5
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0 to 0.15
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0.15 to 0.4
Iron (Fe), % 0 to 3.0
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.010
0 to 0.15
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0.4 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15