MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. 7178 Aluminum

N06200 nickel belongs to the nickel alloys classification, while 7178 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 51
4.5 to 12
Fatigue Strength, MPa 290
120 to 210
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 84
27
Shear Strength, MPa 560
140 to 380
Tensile Strength: Ultimate (UTS), MPa 780
240 to 640
Tensile Strength: Yield (Proof), MPa 320
120 to 560

Thermal Properties

Latent Heat of Fusion, J/g 330
370
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1500
630
Melting Onset (Solidus), °C 1450
480
Specific Heat Capacity, J/kg-K 430
860
Thermal Conductivity, W/m-K 9.1
130
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
91

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.7
3.1
Embodied Carbon, kg CO2/kg material 12
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
24 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 240
110 to 2220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 25
21 to 58
Strength to Weight: Bending, points 22
28 to 54
Thermal Diffusivity, mm2/s 2.4
47
Thermal Shock Resistance, points 21
10 to 28

Alloy Composition

Aluminum (Al), % 0 to 0.5
85.4 to 89.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0.18 to 0.28
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
1.6 to 2.4
Iron (Fe), % 0 to 3.0
0 to 0.5
Magnesium (Mg), % 0
2.4 to 3.1
Manganese (Mn), % 0 to 0.010
0 to 0.3
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
6.3 to 7.3
Residuals, % 0
0 to 0.15