MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. 8011A Aluminum

N06200 nickel belongs to the nickel alloys classification, while 8011A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 51
1.7 to 28
Fatigue Strength, MPa 290
33 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 780
100 to 180
Tensile Strength: Yield (Proof), MPa 320
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1500
650
Melting Onset (Solidus), °C 1450
630
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 9.1
210
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
56
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
180

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.0
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 240
8.2 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 25
11 to 18
Strength to Weight: Bending, points 22
18 to 26
Thermal Diffusivity, mm2/s 2.4
86
Thermal Shock Resistance, points 21
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 0 to 0.5
97.5 to 99.1
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0 to 0.1
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0 to 0.1
Iron (Fe), % 0 to 3.0
0.5 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.010
0 to 0.1
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0.4 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15