MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. EN AC-48000 Aluminum

N06200 nickel belongs to the nickel alloys classification, while EN AC-48000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
73
Elongation at Break, % 51
1.0
Fatigue Strength, MPa 290
85 to 86
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
28
Tensile Strength: Ultimate (UTS), MPa 780
220 to 310
Tensile Strength: Yield (Proof), MPa 320
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
570
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1500
600
Melting Onset (Solidus), °C 1450
560
Specific Heat Capacity, J/kg-K 430
890
Thermal Conductivity, W/m-K 9.1
130
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
7.9
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 310
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 240
300 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 25
23 to 33
Strength to Weight: Bending, points 22
31 to 39
Thermal Diffusivity, mm2/s 2.4
54
Thermal Shock Resistance, points 21
10 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.5
80.4 to 87.2
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0.8 to 1.5
Iron (Fe), % 0 to 3.0
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 0.010
0 to 0.35
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0.7 to 1.3
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
10.5 to 13.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15