MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. CC764S Brass

N06200 nickel belongs to the nickel alloys classification, while CC764S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06200 nickel and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 51
15
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 84
41
Tensile Strength: Ultimate (UTS), MPa 780
680
Tensile Strength: Yield (Proof), MPa 320
290

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 990
130
Melting Completion (Liquidus), °C 1500
850
Melting Onset (Solidus), °C 1450
810
Specific Heat Capacity, J/kg-K 430
400
Thermal Conductivity, W/m-K 9.1
94
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
36

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
2.9
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
80
Resilience: Unit (Modulus of Resilience), kJ/m3 240
390
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 2.4
30
Thermal Shock Resistance, points 21
22

Alloy Composition

Aluminum (Al), % 0 to 0.5
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
52 to 66
Iron (Fe), % 0 to 3.0
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 0.010
0.3 to 4.0
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0 to 3.0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.080
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
20.7 to 50.2