MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. C87800 Brass

N06200 nickel belongs to the nickel alloys classification, while C87800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06200 nickel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 51
25
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
42
Tensile Strength: Ultimate (UTS), MPa 780
590
Tensile Strength: Yield (Proof), MPa 320
350

Thermal Properties

Latent Heat of Fusion, J/g 330
260
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1500
920
Melting Onset (Solidus), °C 1450
820
Specific Heat Capacity, J/kg-K 430
410
Thermal Conductivity, W/m-K 9.1
28
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 65
27
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 2.4
8.3
Thermal Shock Resistance, points 21
21

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
80 to 84.2
Iron (Fe), % 0 to 3.0
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.010
0 to 0.15
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0 to 0.080
3.8 to 4.2
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5