MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. C95820 Bronze

N06200 nickel belongs to the nickel alloys classification, while C95820 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06200 nickel and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 51
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
44
Tensile Strength: Ultimate (UTS), MPa 780
730
Tensile Strength: Yield (Proof), MPa 320
310

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 990
230
Melting Completion (Liquidus), °C 1500
1080
Melting Onset (Solidus), °C 1450
1020
Specific Heat Capacity, J/kg-K 430
440
Thermal Conductivity, W/m-K 9.1
38
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 65
29
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 12
3.5
Embodied Energy, MJ/kg 160
56
Embodied Water, L/kg 310
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
86
Resilience: Unit (Modulus of Resilience), kJ/m3 240
400
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 2.4
11
Thermal Shock Resistance, points 21
25

Alloy Composition

Aluminum (Al), % 0 to 0.5
9.0 to 10
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
77.5 to 82.5
Iron (Fe), % 0 to 3.0
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.010
0 to 1.5
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
4.5 to 5.8
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8