MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. 2025 Aluminum

N06210 nickel belongs to the nickel alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
72
Elongation at Break, % 51
15
Fatigue Strength, MPa 320
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
27
Shear Strength, MPa 560
240
Tensile Strength: Ultimate (UTS), MPa 780
400
Tensile Strength: Yield (Proof), MPa 350
260

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1570
640
Melting Onset (Solidus), °C 1510
520
Specific Heat Capacity, J/kg-K 420
870
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 85
10
Density, g/cm3 9.0
3.0
Embodied Carbon, kg CO2/kg material 17
7.9
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 310
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
55
Resilience: Unit (Modulus of Resilience), kJ/m3 280
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 24
37
Strength to Weight: Bending, points 21
40
Thermal Shock Resistance, points 22
18

Alloy Composition

Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0 to 0.1
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 0 to 1.0
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0.4 to 1.2
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0.5 to 1.2
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15