MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. 204.0 Aluminum

N06210 nickel belongs to the nickel alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 51
5.7 to 7.8
Fatigue Strength, MPa 320
63 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
27
Tensile Strength: Ultimate (UTS), MPa 780
230 to 340
Tensile Strength: Yield (Proof), MPa 350
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1570
650
Melting Onset (Solidus), °C 1510
580
Specific Heat Capacity, J/kg-K 420
880
Thermal Expansion, µm/m-K 12
19

Otherwise Unclassified Properties

Base Metal Price, % relative 85
11
Density, g/cm3 9.0
3.0
Embodied Carbon, kg CO2/kg material 17
8.0
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 310
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 280
220 to 350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 24
21 to 31
Strength to Weight: Bending, points 21
28 to 36
Thermal Shock Resistance, points 22
12 to 18

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 0 to 1.0
0 to 0.35
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0 to 0.050
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15