MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. 359.0 Aluminum

N06210 nickel belongs to the nickel alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 51
3.8 to 4.9
Fatigue Strength, MPa 320
100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
27
Shear Strength, MPa 560
220 to 230
Tensile Strength: Ultimate (UTS), MPa 780
340 to 350
Tensile Strength: Yield (Proof), MPa 350
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 330
530
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1570
600
Melting Onset (Solidus), °C 1510
570
Specific Heat Capacity, J/kg-K 420
910
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 9.0
2.6
Embodied Carbon, kg CO2/kg material 17
8.0
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 310
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 280
450 to 540
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 22
54
Strength to Weight: Axial, points 24
37 to 38
Strength to Weight: Bending, points 21
42 to 43
Thermal Shock Resistance, points 22
16 to 17

Alloy Composition

Aluminum (Al), % 0
88.9 to 91
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0 to 1.0
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
8.5 to 9.5
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15