MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. 380.0 Aluminum

N06210 nickel belongs to the nickel alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
74
Elongation at Break, % 51
3.0
Fatigue Strength, MPa 320
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
28
Shear Strength, MPa 560
190
Tensile Strength: Ultimate (UTS), MPa 780
320
Tensile Strength: Yield (Proof), MPa 350
160

Thermal Properties

Latent Heat of Fusion, J/g 330
510
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1570
590
Melting Onset (Solidus), °C 1510
540
Specific Heat Capacity, J/kg-K 420
870
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
10
Density, g/cm3 9.0
2.9
Embodied Carbon, kg CO2/kg material 17
7.5
Embodied Energy, MJ/kg 250
140
Embodied Water, L/kg 310
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 280
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
48
Strength to Weight: Axial, points 24
31
Strength to Weight: Bending, points 21
36
Thermal Shock Resistance, points 22
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 0 to 1.0
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
7.5 to 9.5
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Tin (Sn), % 0
0 to 0.35
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5