MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. 5252 Aluminum

N06210 nickel belongs to the nickel alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 51
4.5 to 11
Fatigue Strength, MPa 320
100 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
25
Shear Strength, MPa 560
140 to 160
Tensile Strength: Ultimate (UTS), MPa 780
230 to 290
Tensile Strength: Yield (Proof), MPa 350
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1570
650
Melting Onset (Solidus), °C 1510
610
Specific Heat Capacity, J/kg-K 420
910
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 17
8.7
Embodied Energy, MJ/kg 250
160
Embodied Water, L/kg 310
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 280
210 to 430
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 24
23 to 30
Strength to Weight: Bending, points 21
31 to 36
Thermal Shock Resistance, points 22
10 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 97.8
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0 to 0.080
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Vanadium (V), % 0 to 0.35
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1