MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. 6016 Aluminum

N06210 nickel belongs to the nickel alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 51
11 to 27
Fatigue Strength, MPa 320
68 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
26
Shear Strength, MPa 560
130 to 170
Tensile Strength: Ultimate (UTS), MPa 780
200 to 280
Tensile Strength: Yield (Proof), MPa 350
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1570
660
Melting Onset (Solidus), °C 1510
610
Specific Heat Capacity, J/kg-K 420
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 17
8.2
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 280
82 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 24
21 to 29
Strength to Weight: Bending, points 21
29 to 35
Thermal Shock Resistance, points 22
9.1 to 12

Alloy Composition

Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0 to 0.1
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0 to 1.0
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0 to 0.5
0 to 0.2
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
1.0 to 1.5
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15