MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. 6110A Aluminum

N06210 nickel belongs to the nickel alloys classification, while 6110A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is 6110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 51
11 to 18
Fatigue Strength, MPa 320
140 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
26
Shear Strength, MPa 560
220 to 280
Tensile Strength: Ultimate (UTS), MPa 780
360 to 470
Tensile Strength: Yield (Proof), MPa 350
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1570
650
Melting Onset (Solidus), °C 1510
600
Specific Heat Capacity, J/kg-K 420
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 9.0
2.8
Embodied Carbon, kg CO2/kg material 17
8.4
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 310
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
47 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 280
450 to 1300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 24
36 to 47
Strength to Weight: Bending, points 21
41 to 48
Thermal Shock Resistance, points 22
16 to 21

Alloy Composition

Aluminum (Al), % 0
94.8 to 98
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0.050 to 0.25
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 0 to 1.0
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0 to 0.5
0.3 to 0.9
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0.7 to 1.1
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15