MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. AISI 321 Stainless Steel

N06210 nickel belongs to the nickel alloys classification, while AISI 321 stainless steel belongs to the iron alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N06210 nickel and the bottom bar is AISI 321 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 51
34 to 50
Fatigue Strength, MPa 320
220 to 270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 85
77
Shear Strength, MPa 560
420 to 460
Tensile Strength: Ultimate (UTS), MPa 780
590 to 690
Tensile Strength: Yield (Proof), MPa 350
220 to 350

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 980
870
Melting Completion (Liquidus), °C 1570
1430
Melting Onset (Solidus), °C 1510
1400
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 85
16
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 17
3.2
Embodied Energy, MJ/kg 250
45
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
190 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 280
130 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 24
21 to 25
Strength to Weight: Bending, points 21
20 to 22
Thermal Shock Resistance, points 22
13 to 15

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.080
Chromium (Cr), % 18 to 20
17 to 19
Cobalt (Co), % 0 to 1.0
0
Iron (Fe), % 0 to 1.0
65.3 to 74
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
9.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.080
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Tantalum (Ta), % 1.5 to 2.2
0
Titanium (Ti), % 0
0 to 0.7
Vanadium (V), % 0 to 0.35
0