MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. EN 1.4598 Stainless Steel

N06210 nickel belongs to the nickel alloys classification, while EN 1.4598 stainless steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N06210 nickel and the bottom bar is EN 1.4598 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 51
46
Fatigue Strength, MPa 320
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 85
77
Shear Strength, MPa 560
420
Tensile Strength: Ultimate (UTS), MPa 780
600
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 980
950
Melting Completion (Liquidus), °C 1570
1430
Melting Onset (Solidus), °C 1510
1390
Specific Heat Capacity, J/kg-K 420
470
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 85
19
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 17
3.8
Embodied Energy, MJ/kg 250
52
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
220
Resilience: Unit (Modulus of Resilience), kJ/m3 280
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 21
20
Thermal Shock Resistance, points 22
14

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.030
Chromium (Cr), % 18 to 20
16.5 to 18.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
1.3 to 1.8
Iron (Fe), % 0 to 1.0
60.8 to 70.1
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 18 to 20
2.0 to 2.5
Nickel (Ni), % 54.8 to 62.5
10 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0 to 0.020
0.1 to 0.2
Tantalum (Ta), % 1.5 to 2.2
0
Vanadium (V), % 0 to 0.35
0