MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. EN AC-43300 Aluminum

N06210 nickel belongs to the nickel alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 51
3.4 to 6.7
Fatigue Strength, MPa 320
76 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
27
Tensile Strength: Ultimate (UTS), MPa 780
280 to 290
Tensile Strength: Yield (Proof), MPa 350
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 330
540
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1570
600
Melting Onset (Solidus), °C 1510
590
Specific Heat Capacity, J/kg-K 420
910
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 9.0
2.5
Embodied Carbon, kg CO2/kg material 17
7.9
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 310
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 280
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 22
54
Strength to Weight: Axial, points 24
31 to 32
Strength to Weight: Bending, points 21
37 to 38
Thermal Shock Resistance, points 22
13 to 14

Alloy Composition

Aluminum (Al), % 0
88.9 to 90.8
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
9.0 to 10
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1