MakeItFrom.com
Menu (ESC)

N06210 Nickel vs. EN AC-46400 Aluminum

N06210 nickel belongs to the nickel alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06210 nickel and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
72
Elongation at Break, % 51
1.1 to 1.7
Fatigue Strength, MPa 320
75 to 85
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
27
Tensile Strength: Ultimate (UTS), MPa 780
170 to 310
Tensile Strength: Yield (Proof), MPa 350
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
520
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1570
610
Melting Onset (Solidus), °C 1510
570
Specific Heat Capacity, J/kg-K 420
890
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 17
7.8
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 310
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 280
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 22
52
Strength to Weight: Axial, points 24
18 to 32
Strength to Weight: Bending, points 21
26 to 38
Thermal Shock Resistance, points 22
7.8 to 14

Alloy Composition

Aluminum (Al), % 0
85.4 to 90.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0.8 to 1.3
Iron (Fe), % 0 to 1.0
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 0.5
0.15 to 0.55
Molybdenum (Mo), % 18 to 20
0
Nickel (Ni), % 54.8 to 62.5
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
8.3 to 9.7
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 1.5 to 2.2
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.25