MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. 4115 Aluminum

N06219 nickel belongs to the nickel alloys classification, while 4115 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06219 nickel and the bottom bar is 4115 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 48
1.1 to 11
Fatigue Strength, MPa 270
39 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 520
71 to 130
Tensile Strength: Ultimate (UTS), MPa 730
120 to 220
Tensile Strength: Yield (Proof), MPa 300
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 330
420
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
160
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
41
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 11
8.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 290
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
2.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 230
11 to 270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 24
12 to 23
Strength to Weight: Bending, points 21
20 to 30
Thermal Diffusivity, mm2/s 2.7
66
Thermal Shock Resistance, points 21
5.2 to 9.9

Alloy Composition

Aluminum (Al), % 0 to 0.5
94.6 to 97.4
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0.1 to 0.5
Iron (Fe), % 2.0 to 4.0
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0 to 0.5
0.6 to 1.2
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.7 to 1.1
1.8 to 2.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15