MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. 6008 Aluminum

N06219 nickel belongs to the nickel alloys classification, while 6008 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06219 nickel and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 48
9.1 to 17
Fatigue Strength, MPa 270
55 to 88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 520
120 to 170
Tensile Strength: Ultimate (UTS), MPa 730
200 to 290
Tensile Strength: Yield (Proof), MPa 300
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
190
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
49
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
160

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 11
8.5
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 230
76 to 360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 24
21 to 29
Strength to Weight: Bending, points 21
28 to 35
Thermal Diffusivity, mm2/s 2.7
77
Thermal Shock Resistance, points 21
9.0 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.5
96.5 to 99.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0 to 0.3
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 2.0 to 4.0
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 0.5
0 to 0.3
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.7 to 1.1
0.5 to 0.9
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.5
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15