MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. 712.0 Aluminum

N06219 nickel belongs to the nickel alloys classification, while 712.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06219 nickel and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 48
4.5 to 4.7
Fatigue Strength, MPa 270
140 to 180
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
27
Shear Strength, MPa 520
180
Tensile Strength: Ultimate (UTS), MPa 730
250 to 260
Tensile Strength: Yield (Proof), MPa 300
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 10
160
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 11
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 290
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
11
Resilience: Unit (Modulus of Resilience), kJ/m3 230
240 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 24
24 to 25
Strength to Weight: Bending, points 21
30 to 31
Thermal Diffusivity, mm2/s 2.7
62
Thermal Shock Resistance, points 21
11

Alloy Composition

Aluminum (Al), % 0 to 0.5
90.7 to 94
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0.4 to 0.6
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.25
Iron (Fe), % 2.0 to 4.0
0 to 0.5
Magnesium (Mg), % 0
0.5 to 0.65
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.7 to 1.1
0 to 0.3
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.5
0.15 to 0.25
Zinc (Zn), % 0
5.0 to 6.5
Residuals, % 0
0 to 0.2