MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. C19500 Copper

N06219 nickel belongs to the nickel alloys classification, while C19500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is C19500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 48
2.3 to 38
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
44
Shear Strength, MPa 520
260 to 360
Tensile Strength: Ultimate (UTS), MPa 730
380 to 640
Tensile Strength: Yield (Proof), MPa 300
120 to 600

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1380
1090
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
200
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
50 to 56
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
50 to 57

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 11
2.7
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
14 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230
59 to 1530
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 24
12 to 20
Strength to Weight: Bending, points 21
13 to 18
Thermal Diffusivity, mm2/s 2.7
58
Thermal Shock Resistance, points 21
13 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.020
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0.3 to 1.3
Copper (Cu), % 0 to 0.5
94.9 to 98.6
Iron (Fe), % 2.0 to 4.0
1.0 to 2.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0
Phosphorus (P), % 0 to 0.020
0.010 to 0.35
Silicon (Si), % 0.7 to 1.1
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.1 to 1.0
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2