MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. C50100 Bronze

N06219 nickel belongs to the nickel alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 48
40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 520
180
Tensile Strength: Ultimate (UTS), MPa 730
270
Tensile Strength: Yield (Proof), MPa 300
82

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1070
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 10
230
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
55
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
55

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 11
2.6
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
82
Resilience: Unit (Modulus of Resilience), kJ/m3 230
29
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 24
8.3
Strength to Weight: Bending, points 21
10
Thermal Diffusivity, mm2/s 2.7
66
Thermal Shock Resistance, points 21
9.5

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
98.6 to 99.49
Iron (Fe), % 2.0 to 4.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0
Phosphorus (P), % 0 to 0.020
0.010 to 0.050
Silicon (Si), % 0.7 to 1.1
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 0.8
Titanium (Ti), % 0 to 0.5
0
Residuals, % 0
0 to 0.5