MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. C62500 Bronze

N06219 nickel belongs to the nickel alloys classification, while C62500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 48
1.0
Fatigue Strength, MPa 270
460
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
42
Shear Strength, MPa 520
410
Tensile Strength: Ultimate (UTS), MPa 730
690
Tensile Strength: Yield (Proof), MPa 300
410

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
230
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1050
Specific Heat Capacity, J/kg-K 450
460
Thermal Conductivity, W/m-K 10
47
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 60
26
Density, g/cm3 8.5
8.1
Embodied Carbon, kg CO2/kg material 11
3.3
Embodied Energy, MJ/kg 140
55
Embodied Water, L/kg 290
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 230
750
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 2.7
13
Thermal Shock Resistance, points 21
24

Alloy Composition

Aluminum (Al), % 0 to 0.5
12.5 to 13.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
78.5 to 84
Iron (Fe), % 2.0 to 4.0
3.5 to 5.5
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.7 to 1.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.5
0
Residuals, % 0
0 to 0.5