MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. C71000 Copper-nickel

N06219 nickel belongs to the nickel alloys classification, while C71000 copper-nickel belongs to the copper alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is C71000 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
49
Tensile Strength: Ultimate (UTS), MPa 730
320 to 560

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
240
Melting Completion (Liquidus), °C 1430
1200
Melting Onset (Solidus), °C 1380
1150
Specific Heat Capacity, J/kg-K 450
400
Thermal Conductivity, W/m-K 10
43
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
6.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
37
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 11
4.3
Embodied Energy, MJ/kg 140
63
Embodied Water, L/kg 290
290

Common Calculations

Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
10 to 18
Strength to Weight: Bending, points 21
12 to 17
Thermal Diffusivity, mm2/s 2.7
12
Thermal Shock Resistance, points 21
12 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
73.5 to 80.5
Iron (Fe), % 2.0 to 4.0
0.5 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
19 to 23
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.7 to 1.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5