MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. C90700 Bronze

N06219 nickel belongs to the nickel alloys classification, while C90700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 48
12
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 730
330
Tensile Strength: Yield (Proof), MPa 300
180

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1380
830
Specific Heat Capacity, J/kg-K 450
370
Thermal Conductivity, W/m-K 10
71
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 60
35
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 11
3.7
Embodied Energy, MJ/kg 140
60
Embodied Water, L/kg 290
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
34
Resilience: Unit (Modulus of Resilience), kJ/m3 230
150
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 24
10
Strength to Weight: Bending, points 21
12
Thermal Diffusivity, mm2/s 2.7
22
Thermal Shock Resistance, points 21
12

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
88 to 90
Iron (Fe), % 2.0 to 4.0
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0.7 to 1.1
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
10 to 12
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6