MakeItFrom.com
Menu (ESC)

N06230 Nickel vs. 5657 Aluminum

N06230 nickel belongs to the nickel alloys classification, while 5657 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06230 nickel and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 38 to 48
6.6 to 15
Fatigue Strength, MPa 250 to 360
74 to 88
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 83
26
Shear Strength, MPa 420 to 600
92 to 110
Tensile Strength: Ultimate (UTS), MPa 620 to 840
150 to 200
Tensile Strength: Yield (Proof), MPa 330 to 400
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1370
660
Melting Onset (Solidus), °C 1300
640
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 8.9
210
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
54
Electrical Conductivity: Equal Weight (Specific), % IACS 1.3
180

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 9.5
2.7
Embodied Carbon, kg CO2/kg material 11
8.4
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 290
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 330
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 380
140 to 200
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 21
50
Strength to Weight: Axial, points 18 to 25
15 to 20
Strength to Weight: Bending, points 17 to 21
23 to 28
Thermal Diffusivity, mm2/s 2.3
84
Thermal Shock Resistance, points 17 to 23
6.7 to 8.6

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
98.5 to 99.4
Boron (B), % 0 to 0.015
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 3.0
0 to 0.1
Lanthanum (La), % 0.0050 to 0.050
0
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0.3 to 1.0
0 to 0.030
Molybdenum (Mo), % 1.0 to 3.0
0
Nickel (Ni), % 47.5 to 65.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.25 to 0.75
0 to 0.080
Sulfur (S), % 0 to 0.015
0
Tungsten (W), % 13 to 15
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.050