MakeItFrom.com
Menu (ESC)

N06230 Nickel vs. EN AC-41000 Aluminum

N06230 nickel belongs to the nickel alloys classification, while EN AC-41000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06230 nickel and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 38 to 48
4.5
Fatigue Strength, MPa 250 to 360
58 to 71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 83
26
Tensile Strength: Ultimate (UTS), MPa 620 to 840
170 to 280
Tensile Strength: Yield (Proof), MPa 330 to 400
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1300
630
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 8.9
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 9.5
2.7
Embodied Carbon, kg CO2/kg material 11
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 290
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 330
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 380
46 to 300
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 21
51
Strength to Weight: Axial, points 18 to 25
18 to 29
Strength to Weight: Bending, points 17 to 21
26 to 35
Thermal Diffusivity, mm2/s 2.3
69
Thermal Shock Resistance, points 17 to 23
7.8 to 13

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
95.2 to 97.6
Boron (B), % 0 to 0.015
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 3.0
0 to 0.6
Lanthanum (La), % 0.0050 to 0.050
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0.3 to 1.0
0.3 to 0.5
Molybdenum (Mo), % 1.0 to 3.0
0
Nickel (Ni), % 47.5 to 65.2
0 to 0.050
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.25 to 0.75
1.6 to 2.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.050 to 0.2
Tungsten (W), % 13 to 15
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15