MakeItFrom.com
Menu (ESC)

N06230 Nickel vs. C84100 Brass

N06230 nickel belongs to the nickel alloys classification, while C84100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06230 nickel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 38 to 48
13
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 83
39
Tensile Strength: Ultimate (UTS), MPa 620 to 840
230
Tensile Strength: Yield (Proof), MPa 330 to 400
81

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1370
1000
Melting Onset (Solidus), °C 1300
810
Specific Heat Capacity, J/kg-K 420
380
Thermal Conductivity, W/m-K 8.9
110
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.3
25

Otherwise Unclassified Properties

Base Metal Price, % relative 85
29
Density, g/cm3 9.5
8.5
Embodied Carbon, kg CO2/kg material 11
2.9
Embodied Energy, MJ/kg 160
48
Embodied Water, L/kg 290
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 330
24
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 380
30
Stiffness to Weight: Axial, points 12
7.1
Stiffness to Weight: Bending, points 21
19
Strength to Weight: Axial, points 18 to 25
7.4
Strength to Weight: Bending, points 17 to 21
9.7
Thermal Diffusivity, mm2/s 2.3
33
Thermal Shock Resistance, points 17 to 23
7.8

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Boron (B), % 0 to 0.015
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0
78 to 85
Iron (Fe), % 0 to 3.0
0 to 0.3
Lanthanum (La), % 0.0050 to 0.050
0
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 0.3 to 1.0
0
Molybdenum (Mo), % 1.0 to 3.0
0
Nickel (Ni), % 47.5 to 65.2
0 to 0.5
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0.25 to 0.75
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 4.5
Tungsten (W), % 13 to 15
0
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5