MakeItFrom.com
Menu (ESC)

N06230 Nickel vs. S33425 Stainless Steel

N06230 nickel belongs to the nickel alloys classification, while S33425 stainless steel belongs to the iron alloys. They have 49% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06230 nickel and the bottom bar is S33425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 38 to 48
45
Fatigue Strength, MPa 250 to 360
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 83
79
Shear Strength, MPa 420 to 600
400
Tensile Strength: Ultimate (UTS), MPa 620 to 840
580
Tensile Strength: Yield (Proof), MPa 330 to 400
230

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Mechanical, °C 990
1100
Melting Completion (Liquidus), °C 1370
1430
Melting Onset (Solidus), °C 1300
1380
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 8.9
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 85
27
Density, g/cm3 9.5
7.9
Embodied Carbon, kg CO2/kg material 11
5.1
Embodied Energy, MJ/kg 160
71
Embodied Water, L/kg 290
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 330
210
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 380
140
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 21
25
Strength to Weight: Axial, points 18 to 25
20
Strength to Weight: Bending, points 17 to 21
19
Thermal Diffusivity, mm2/s 2.3
3.7
Thermal Shock Resistance, points 17 to 23
13

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0.15 to 0.6
Boron (B), % 0 to 0.015
0
Carbon (C), % 0.050 to 0.15
0 to 0.080
Chromium (Cr), % 20 to 24
21 to 23
Cobalt (Co), % 0 to 5.0
0
Iron (Fe), % 0 to 3.0
47.2 to 56.7
Lanthanum (La), % 0.0050 to 0.050
0
Manganese (Mn), % 0.3 to 1.0
0 to 1.5
Molybdenum (Mo), % 1.0 to 3.0
2.0 to 3.0
Nickel (Ni), % 47.5 to 65.2
20 to 23
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0.25 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.6
Tungsten (W), % 13 to 15
0