MakeItFrom.com
Menu (ESC)

N06250 Nickel vs. 2014 Aluminum

N06250 nickel belongs to the nickel alloys classification, while 2014 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06250 nickel and the bottom bar is 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 46
1.5 to 16
Fatigue Strength, MPa 230
90 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 500
130 to 290
Tensile Strength: Ultimate (UTS), MPa 710
190 to 500
Tensile Strength: Yield (Proof), MPa 270
100 to 440

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1490
630
Melting Onset (Solidus), °C 1440
510
Specific Heat Capacity, J/kg-K 440
870
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 10
8.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 270
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
6.6 to 56
Resilience: Unit (Modulus of Resilience), kJ/m3 170
76 to 1330
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 23
18 to 46
Strength to Weight: Bending, points 21
25 to 46
Thermal Shock Resistance, points 19
8.4 to 22

Alloy Composition

Aluminum (Al), % 0
90.4 to 95
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 23
0 to 0.1
Copper (Cu), % 0.25 to 1.3
3.9 to 5.0
Iron (Fe), % 7.4 to 19.4
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.0
0.4 to 1.2
Molybdenum (Mo), % 10.1 to 12
0
Nickel (Ni), % 50 to 54
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.090
0.5 to 1.2
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15