MakeItFrom.com
Menu (ESC)

N06250 Nickel vs. 6018 Aluminum

N06250 nickel belongs to the nickel alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06250 nickel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 46
9.0 to 9.1
Fatigue Strength, MPa 230
85 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 500
170 to 180
Tensile Strength: Ultimate (UTS), MPa 710
290 to 300
Tensile Strength: Yield (Proof), MPa 270
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1490
640
Melting Onset (Solidus), °C 1440
570
Specific Heat Capacity, J/kg-K 440
890
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.6
2.9
Embodied Carbon, kg CO2/kg material 10
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 170
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
48
Strength to Weight: Axial, points 23
28 to 29
Strength to Weight: Bending, points 21
34 to 35
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 23
0 to 0.1
Copper (Cu), % 0.25 to 1.3
0.15 to 0.4
Iron (Fe), % 7.4 to 19.4
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 10.1 to 12
0
Nickel (Ni), % 50 to 54
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.090
0.5 to 1.2
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15