MakeItFrom.com
Menu (ESC)

N06250 Nickel vs. EN AC-71100 Aluminum

N06250 nickel belongs to the nickel alloys classification, while EN AC-71100 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06250 nickel and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 46
1.1
Fatigue Strength, MPa 230
150
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 82
27
Tensile Strength: Ultimate (UTS), MPa 710
260
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 320
490
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1490
580
Melting Onset (Solidus), °C 1440
520
Specific Heat Capacity, J/kg-K 440
860
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.6
2.9
Embodied Carbon, kg CO2/kg material 10
7.4
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 270
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 170
360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 21
31
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 0
78.7 to 83.3
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0.25 to 1.3
0 to 0.1
Iron (Fe), % 7.4 to 19.4
0 to 0.3
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 10.1 to 12
0
Nickel (Ni), % 50 to 54
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.090
7.5 to 9.5
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
9.0 to 10.5
Residuals, % 0
0 to 0.15