MakeItFrom.com
Menu (ESC)

N06250 Nickel vs. C93600 Bronze

N06250 nickel belongs to the nickel alloys classification, while C93600 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06250 nickel and the bottom bar is C93600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
99
Elongation at Break, % 46
14
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 82
36
Tensile Strength: Ultimate (UTS), MPa 710
260
Tensile Strength: Yield (Proof), MPa 270
140

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 980
150
Melting Completion (Liquidus), °C 1490
940
Melting Onset (Solidus), °C 1440
840
Specific Heat Capacity, J/kg-K 440
350
Thermal Expansion, µm/m-K 13
19

Otherwise Unclassified Properties

Base Metal Price, % relative 55
31
Density, g/cm3 8.6
9.0
Embodied Carbon, kg CO2/kg material 10
3.2
Embodied Energy, MJ/kg 140
51
Embodied Water, L/kg 270
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
31
Resilience: Unit (Modulus of Resilience), kJ/m3 170
98
Stiffness to Weight: Axial, points 14
6.1
Stiffness to Weight: Bending, points 23
17
Strength to Weight: Axial, points 23
7.9
Strength to Weight: Bending, points 21
9.9
Thermal Shock Resistance, points 19
9.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.55
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0.25 to 1.3
79 to 83
Iron (Fe), % 7.4 to 19.4
0 to 0.2
Lead (Pb), % 0
11 to 13
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 10.1 to 12
0
Nickel (Ni), % 50 to 54
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 0.090
0 to 0.0050
Sulfur (S), % 0 to 0.0050
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.7