MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. 380.0 Aluminum

N06255 nickel belongs to the nickel alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06255 nickel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
74
Elongation at Break, % 45
3.0
Fatigue Strength, MPa 210
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
28
Shear Strength, MPa 460
190
Tensile Strength: Ultimate (UTS), MPa 660
320
Tensile Strength: Yield (Proof), MPa 250
160

Thermal Properties

Latent Heat of Fusion, J/g 320
510
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1470
590
Melting Onset (Solidus), °C 1420
540
Specific Heat Capacity, J/kg-K 450
870
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.5
2.9
Embodied Carbon, kg CO2/kg material 9.4
7.5
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 270
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
48
Strength to Weight: Axial, points 22
31
Strength to Weight: Bending, points 20
36
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0 to 1.2
3.0 to 4.0
Iron (Fe), % 6.0 to 24
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0 to 0.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.69
0
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5