MakeItFrom.com
Menu (ESC)

N06255 Nickel vs. 705.0 Aluminum

N06255 nickel belongs to the nickel alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06255 nickel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 45
8.4 to 10
Fatigue Strength, MPa 210
63 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 660
240 to 260
Tensile Strength: Yield (Proof), MPa 250
130

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1420
610
Specific Heat Capacity, J/kg-K 450
890
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.4
8.4
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 150
120 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22
24 to 26
Strength to Weight: Bending, points 20
31 to 32
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
92.3 to 98.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0 to 0.4
Copper (Cu), % 0 to 1.2
0 to 0.2
Iron (Fe), % 6.0 to 24
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.6
Molybdenum (Mo), % 6.0 to 9.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.69
0 to 0.25
Tungsten (W), % 0 to 3.0
0
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15